AP[®] PHYSICS 1 TABLE OF INFORMATION

CONSTANTS AND CONVERSION FACTORS				
Proton mass, $m_p = 1.67 \times 10^{-27}$ kg	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$			
Neutron mass, $m_n = 1.67 \times 10^{-27}$ kg	Coulomb's law constant, $k = 1/4\pi\varepsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$			
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$			
Speed of light, $c = 3.00 \times 10^8 \text{ m/s}$	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$			

	meter,	m	kelvin,	Κ	watt,	W	degree Celsius,	°C
UNIT	kilogram,	kg	hertz,	Hz	coulomb,	С		
SYMBOLS	second,	S	newton,	Ν	volt,	V		
	ampere,	А	joule,	J	ohm,	Ω		

PREFIXES					
Factor	Prefix	Symbol			
10 ¹²	tera	Т			
10 ⁹	giga	G			
10^{6}	mega	М			
10^{3}	kilo	k			
10^{-2}	centi	с			
10^{-3}	milli	m			
10^{-6}	micro	μ			
10 ⁻⁹	nano	n			
10^{-12}	pico	р			

VALUES OF TRIGONOMETRIC FUNCTIONS FOR COMMON ANGLES							
θ	0°	30°	37°	45°	53°	60°	90°
sin $ heta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	8

The following conventions are used in this exam.

- I. The frame of reference of any problem is assumed to be inertial unless otherwise stated.
- II. Assume air resistance is negligible unless otherwise stated.
- III. In all situations, positive work is defined as work done <u>on</u> a system.
- IV. The direction of current is conventional current: the direction in which positive charge would drift.
- V. Assume all batteries and meters are ideal unless otherwise stated.

AP[®] PHYSICS 1 EQUATIONS

MEC	HANICS	ELECTRICITY			
$v_x = v_{x0} + a_x t$ $x = x_0 + v_{x0}t + \frac{1}{2}a_x t^2$ $v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$ $\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$ $ \vec{F}_f \le \mu \vec{F}_n $ $a_c = \frac{v^2}{r}$ $\vec{p} = m\vec{v}$	HANICS $a = \operatorname{acceleration}$ $d = \operatorname{distance}$ $E = \operatorname{energy}$ $f = \operatorname{frequency}$ $F = \operatorname{force}$ $h = \operatorname{height}$ $I = \operatorname{rotational inertia}$ $K = \operatorname{kinetic energy}$ $k = \operatorname{spring constant}$ $L = \operatorname{angular momentum}$ $\ell = \operatorname{length}$ $m = \operatorname{mass}$ $P = \operatorname{power}$ $p = \operatorname{momentum}$ $r = \operatorname{radius or separation}$ $T = \operatorname{period}$	ELECTRICITY $ \vec{F}_E = k \frac{ q_1q_2 }{r^2}$ $A = \text{ area}$ $I = k \frac{ q_1q_2 }{r^2}$ $F = \text{ force}$ $I = \text{current}$ $I = \text{ current}$ $I = \frac{\Delta q}{\Delta t}$ $\ell = \text{ length}$ $R = \frac{\rho \ell}{A}$ $R = \text{ resistance}$ $I = \frac{\Delta V}{R}$ $r = \text{ separation}$ $I = \frac{\Delta V}{R}$ $r = \text{ separation}$ $P = I \Delta V$ $\rho = \text{ resistivity}$ $R_s = \sum_i R_i$ $\frac{1}{R_p} = \sum_i \frac{1}{R_i}$	ıtial		
$\Delta \vec{p} = \vec{F} \Delta t$ $K = \frac{1}{2} m v^{2}$ $\Delta E = W = F_{\parallel} d = F d \cos \theta$	t = time $U = potential energy$ $V = volume$ $v = speed$ $W = work done on a system$ $x = position$	$WAVES$ $\lambda = \frac{v}{f}$ $f = \text{frequency}$ $v = \text{speed}$ $\lambda = \text{wavelength}$			
$P = \frac{\Delta E}{\Delta t}$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $\omega = \omega_0 + \alpha t$	$\alpha = angular acceleration$ $\mu = coefficient of friction$ $\theta = angle$ $\rho = density$ $\tau = torque$	GEOMETRY AND TRIGONOMETRYRectangle $A = area$ $A = bh$ $C = circumference$ $V = volume$ Triangle $S = surface area$			
$x = A\cos(2\pi ft)$ $\vec{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$ $\tau = r_{\perp}F = rF\sin\theta$	ω = angular speed $\Delta U_g = mg \Delta y$ $T = \frac{2\pi}{\omega} = \frac{1}{f}$	$A = \frac{1}{2}bh$ b = base h = height $\ell = length$ $k = \pi r^{2}$ $C = 2\pi r$ b = base $\ell = length$ r = radius r = radius			
$L = I\omega$ $\Delta L = \tau \Delta t$ $K = \frac{1}{2}I\omega^{2}$	$T_{s} = 2\pi \sqrt{\frac{m}{k}}$ $T_{p} = 2\pi \sqrt{\frac{\ell}{g}}$ $\left \vec{F}_{g}\right = G \frac{m_{1}m_{2}}{r^{2}}$	Rectangular solid $V = \ell wh$ Right triangle $c^2 = a^2 + b^2$ Cylinder $\sin \theta = \frac{a}{c}$ $V = \pi r^2 \ell$ $S = 2\pi r \ell + 2\pi r^2$ $\cos \theta = \frac{b}{c}$			
$ \vec{F}_s = k \vec{x} $ $U_s = \frac{1}{2}kx^2$ $\rho = \frac{m}{V}$	$\vec{r}_{g} = \frac{\vec{F}_{g}}{r^{2}}$ $\vec{g} = \frac{\vec{F}_{g}}{m}$ $U_{G} = -\frac{Gm_{1}m_{2}}{r}$	Sphere $V = \frac{4}{3}\pi r^{3}$ $S = 4\pi r^{2}$ $\tan \theta = \frac{a}{b}$ c $\theta = 90^{\circ}$ b			